Reddit Data Export Formats and Schema Design
Choose optimal formats for Reddit data storage, analysis, and interoperability
Selecting the right data format for Reddit exports impacts storage costs, query performance, and downstream compatibility. This guide covers format selection, schema design, and best practices for Reddit data at any scale.
Format Comparison
| Format | Compression | Query Speed | Human Readable | Best For |
|---|---|---|---|---|
| JSON Lines | Medium | Slow | Yes | Streaming, debugging |
| CSV | Medium | Slow | Yes | Spreadsheets, simple analysis |
| Parquet | Excellent | Fast | No | Analytics, data lakes |
| Avro | Good | Fast | No | Streaming pipelines |
One JSON object per line. Easy to stream, append, and debug.
- Use for: Real-time ingestion, debugging, small datasets
- Avoid for: Large-scale analytics, frequent queries
Columnar format optimized for analytical queries. Industry standard for data lakes.
- Use for: Data warehouses, Spark/Pandas analysis, long-term storage
- Avoid for: Real-time streaming, simple scripts
JSON / JSONL Format
JSON Lines is the most common format for Reddit data exchange due to its simplicity and Reddit API's native JSON responses.
{"id": "1abc123", "subreddit": "technology", "title": "New AI breakthrough announced", "selftext": "...", "author": "user123", "score": 1542, "num_comments": 234, "created_utc": 1706745600}
{"id": "1abc124", "subreddit": "programming", "title": "Best practices for API design", "selftext": "...", "author": "dev_user", "score": 892, "num_comments": 156, "created_utc": 1706745700}
{"id": "1abc125", "subreddit": "startups", "title": "How we scaled to 1M users", "selftext": "...", "author": "founder", "score": 2341, "num_comments": 445, "created_utc": 1706745800}
import json from typing import List, Dict, Iterator import gzip class JSONLExporter: """Export Reddit data to JSON Lines format.""" def __init__(self, compress: bool = True): self.compress = compress def export( self, posts: List[Dict], filepath: str ): """Export posts to JSONL file.""" if self.compress: filepath = f"{filepath}.gz" open_func = gzip.open mode = 'wt' else: open_func = open mode = 'w' with open_func(filepath, mode, encoding='utf-8') as f: for post in posts: f.write(json.dumps(post, ensure_ascii=False) + '\n') def stream_export( self, posts: Iterator[Dict], filepath: str, buffer_size: int = 1000 ): """Stream export for large datasets.""" open_func = gzip.open if self.compress else open mode = 'wt' if self.compress else 'w' buffer = [] with open_func(filepath, mode, encoding='utf-8') as f: for post in posts: buffer.append(json.dumps(post, ensure_ascii=False)) if len(buffer) >= buffer_size: f.write('\n'.join(buffer) + '\n') buffer = [] if buffer: f.write('\n'.join(buffer) + '\n') def read_jsonl(filepath: str) -> Iterator[Dict]: """Read JSONL file, handling compression.""" open_func = gzip.open if filepath.endswith('.gz') else open mode = 'rt' if filepath.endswith('.gz') else 'r' with open_func(filepath, mode, encoding='utf-8') as f: for line in f: yield json.loads(line) # Usage exporter = JSONLExporter(compress=True) exporter.export(posts, 'reddit_export.jsonl')
Apache Parquet Format
Parquet is the recommended format for analytical workloads. Its columnar storage enables fast queries and excellent compression.
Parquet achieves 10-20x compression on Reddit text data and enables predicate pushdown for filtered queries. A 1GB JSON export typically compresses to 50-100MB in Parquet.
import pyarrow as pa import pyarrow.parquet as pq import pandas as pd from typing import List, Dict class ParquetExporter: """Export Reddit data to Parquet format.""" # Define schema for type consistency SCHEMA = pa.schema([ ('id', pa.string()), ('subreddit', pa.string()), ('title', pa.string()), ('selftext', pa.string()), ('author', pa.string()), ('score', pa.int32()), ('num_comments', pa.int32()), ('created_utc', pa.timestamp('s')), ('url', pa.string()), ('permalink', pa.string()), ('is_self', pa.bool_()), ('over_18', pa.bool_()), # Enriched fields ('sentiment_label', pa.string()), ('sentiment_score', pa.float32()), ('categories', pa.list_(pa.string())), ('entities', pa.map_(pa.string(), pa.list_(pa.string()))), ]) def __init__( self, compression: str = 'snappy', row_group_size: int = 100000 ): self.compression = compression self.row_group_size = row_group_size def export( self, posts: List[Dict], filepath: str ): """Export posts to Parquet file.""" # Convert to DataFrame df = pd.DataFrame(posts) # Ensure timestamp conversion if 'created_utc' in df.columns: df['created_utc'] = pd.to_datetime( df['created_utc'], unit='s' ) # Write to Parquet table = pa.Table.from_pandas(df) pq.write_table( table, filepath, compression=self.compression, row_group_size=self.row_group_size ) def export_partitioned( self, posts: List[Dict], base_path: str, partition_cols: List[str] = None ): """ Export with partitioning for efficient querying. Recommended partitions: year, month, subreddit """ partition_cols = partition_cols or ['year', 'month'] df = pd.DataFrame(posts) # Add partition columns if 'created_utc' in df.columns: df['created_utc'] = pd.to_datetime(df['created_utc'], unit='s') df['year'] = df['created_utc'].dt.year df['month'] = df['created_utc'].dt.month table = pa.Table.from_pandas(df) pq.write_to_dataset( table, root_path=base_path, partition_cols=partition_cols, compression=self.compression ) def read_parquet( filepath: str, columns: List[str] = None, filters = None ) -> pd.DataFrame: """ Read Parquet with optional column selection and filtering. filters example: [('subreddit', '=', 'technology')] """ return pq.read_table( filepath, columns=columns, filters=filters ).to_pandas() # Usage exporter = ParquetExporter(compression='zstd') # Best compression exporter.export(posts, 'reddit_export.parquet') # Read with filtering df = read_parquet( 'reddit_export.parquet', columns=['id', 'title', 'score'], filters=[('score', '>', 100)] )
Reddit Post Schema
A well-designed schema ensures data consistency and enables efficient querying. Here is the recommended schema for Reddit posts.
from dataclasses import dataclass, field from typing import List, Dict, Optional from datetime import datetime @dataclass class RedditPostSchema: """ Standard schema for Reddit post exports. Core fields from Reddit API plus enrichments. """ # Core identifiers id: str # Reddit post ID (e.g., "1abc123") subreddit: str # Subreddit name without r/ subreddit_id: str # Full subreddit ID (e.g., "t5_2qh33") # Content title: str # Post title selftext: str # Post body (empty for link posts) selftext_html: Optional[str] = None # HTML-formatted body # Author info author: str # Username (without u/) author_fullname: Optional[str] = None # Full author ID # Engagement metrics score: int # Net upvotes (can be negative) upvote_ratio: float # Ratio of upvotes (0-1) num_comments: int # Comment count num_crossposts: int = 0 # Times crossposted # Timestamps created_utc: datetime # Creation time (UTC) edited: Optional[datetime] = None # Last edit time # URLs and links url: str # Linked URL or self post URL permalink: str # Reddit permalink domain: str # Link domain (self.subreddit for text) # Post type flags is_self: bool # True for text posts is_video: bool = False is_original_content: bool = False over_18: bool = False # NSFW flag spoiler: bool = False stickied: bool = False # Flair link_flair_text: Optional[str] = None link_flair_css_class: Optional[str] = None # Awards total_awards_received: int = 0 # Enriched fields (added by processing) sentiment_label: Optional[str] = None # positive/neutral/negative sentiment_score: Optional[float] = None # Confidence (0-1) categories: List[str] = field(default_factory=list) keywords: List[str] = field(default_factory=list) entities: Dict[str, List[str]] = field(default_factory=dict) # Ingestion metadata ingested_at: datetime = field(default_factory=datetime.utcnow) source: str = 'reddit_api' # Data source identifier schema_version: str = '1.0.0' # Schema version for evolution
Export Reddit Data Instantly
reddapi.dev provides one-click export to CSV, JSON, and Excel. Get structured data with sentiment and entity enrichment included.
Try Data ExportCompression Strategies
Compression reduces storage costs and can improve query performance by reducing I/O.
| Algorithm | Compression Ratio | Speed | CPU Usage | Best For |
|---|---|---|---|---|
| Snappy | Medium (~3x) | Very Fast | Low | Real-time, frequent reads |
| Gzip | High (~6x) | Slow | High | Archival, infrequent reads |
| Zstd | High (~7x) | Fast | Medium | Best balance (recommended) |
| LZ4 | Low (~2x) | Fastest | Very Low | Streaming, low latency |
Data Partitioning
Partitioning enables efficient querying of large datasets by organizing data into directories based on common filter columns.
For Reddit data, partition by year/month for time-based queries, or by subreddit for community-focused analysis. Avoid over-partitioning (too many small files) - aim for partition sizes of 100MB-1GB.
# Time-based partitioning (recommended for analytics) reddit_data/ ├── year=2026/ │ ├── month=01/ │ │ ├── part-00000.parquet │ │ └── part-00001.parquet │ └── month=02/ │ └── part-00000.parquet └── _SUCCESS # Subreddit-based partitioning (for community analysis) reddit_data/ ├── subreddit=technology/ │ └── data.parquet ├── subreddit=programming/ │ └── data.parquet └── subreddit=startups/ └── data.parquet # Hybrid partitioning (for large-scale systems) reddit_data/ ├── year=2026/ │ └── month=01/ │ ├── subreddit=technology/ │ │ └── data.parquet │ └── subreddit=programming/ │ └── data.parquet └── _SUCCESS